A Randomized Trial of Chemoradiotherapy and Chemotherapy after Resection of Pancreatic Cancer

John P. Neoptolemos, M.D., Deborah D. Stocken, M.Sc., Helmut Friess, M.D., Claudio Bassi, M.D., Janet A. Dunn, M.Sc., Helen Hickey, B.Sc., Hans Beger, M.D., Laureano Fernandez-Cruz, M.D., Christos Dervenis, M.D., François Lacaine, M.D., Massimo Falconi, M.D., Paolo Pederzoli, M.D., Akos Pap, M.D., David Spooner, M.D., David J. Kerr, M.D., and Markus W. Büchler, M.D., for the European Study Group for Pancreatic Cancer

BACKGROUND
The effect of adjuvant treatment on survival in pancreatic cancer is unclear. We report the final results of the European Study Group for Pancreatic Cancer 1 Trial and update the interim results.

METHODS
In a multicenter trial using a two-by-two factorial design, we randomly assigned 73 patients with resected pancreatic ductal adenocarcinoma to treatment with chemoradiotherapy alone (20 Gy over a two-week period plus fluorouracil), 75 patients to chemotherapy alone (fluorouracil), 72 patients to both chemoradiotherapy and chemotherapy, and 69 patients to observation.

RESULTS
The analysis was based on 237 deaths among the 289 patients (82 percent) and a median follow-up of 47 months (interquartile range, 33 to 62). The estimated five-year survival rate was 10 percent among patients assigned to receive chemoradiotherapy and 20 percent among patients who did not receive chemoradiotherapy (P=0.05). The five-year survival rate was 21 percent among patients who received chemotherapy and 8 percent among patients who did not receive chemotherapy (P=0.009). The benefit of chemotherapy persisted after adjustment for major prognostic factors.

CONCLUSIONS
Adjuvant chemotherapy has a significant survival benefit in patients with resected pancreatic cancer, whereas adjuvant chemoradiotherapy has a deleterious effect on survival.
Pancreatic cancer, with an overall five-year survival rate ranging from 0.4 percent to 4 percent, has a poor prognosis and is one of the top 10 causes of death from cancer in the Western world. Surgical resection improves the outlook, although only about 10 percent of patients with pancreatic cancer are eligible for the procedure. Most treatment failures are due to local recurrence, hepatic metastases, or both, and occur within one to two years after surgery.

Adjuvant (postoperative) therapy may improve long-term survival, but its routine use is not universal because the results of randomized trials have been inconclusive. The Gastrointestinal Tumor Study Group (GITSG) randomly assigned 43 patients to receive surgery alone or chemoradiotherapy followed by maintenance chemotherapy. The median survival was significantly longer in the adjuvant-treatment group than in the surgery group (20 months vs. 11 months), with 5-year survival estimates of 18 percent and 8 percent, respectively. Three subsequent randomized studies, however, failed to confirm the benefit of adjuvant treatment. Moreover, it is unclear whether the survival advantage in the GITSG trial was due to the combination of chemoradiotherapy and maintenance chemotherapy or to only one of these treatments.

The European Study Group for Pancreatic Cancer (ESPAC) undertook a large, multicenter trial to investigate the possible benefits of adjuvant chemoradiotherapy and maintenance chemotherapy in patients with pancreatic cancer. Although preliminary data indicated a survival benefit for adjuvant chemotherapy, the results were inconclusive owing to the short follow-up of only 10 months. In this report we summarize the results of this trial after it reached the primary end point and a median follow-up of 47 months among surviving patients.

METHODS

Patients and Trial Design

The ESPAC-1 trial used a two-by-two factorial design in which, after resection of the pancreatic ductal adenocarcinoma, each patient was randomly assigned to receive chemoradiotherapy or chemotherapy, neither treatment, or both treatments (Fig. 1). The goal was to enroll 70 patients in each of the four groups, yielding combined data for 140 patients in each group for the two main treatment comparisons (chemoradiotherapy vs. no chemoradiotherapy and chemotherapy vs. no chemotherapy) and giving the study the ability to detect absolute differences in the mortality rate at two years of more than 20 percent at a significance level of 5 percent with 90 percent power. The trial was approved by the ethics committees at the national and local level according to the requirements of each country, and all participants gave written informed consent.

Patients who had undergone a complete macroscopic resection of histologically proven pancreatic ductal adenocarcinoma underwent randomization with the use of a blocked method. They were stratified according to the randomization center (the United Kingdom, Switzerland, Germany, or France) and the status of the resection margin (positive or negative). Patients were followed up at three-month intervals until death. A subgroup of patients completed questionnaires about their quality of life.

Adjuvant Therapy

Chemoradiotherapy consisted of a 20-Gy dose to the tumor given in 10 daily fractions over a two-week period plus an intravenous bolus of fluorouracil (500 mg per square meter of body-surface area on each of the first three days of radiotherapy and again after a planned break of two weeks). Chemotherapy consisted of an intravenous bolus of leucovorin (20 mg per square meter), followed by an intravenous bolus of fluorouracil (425 mg per square meter) on each of 5 consecutive days every 28 days for six cycles. Combination therapy consisted of chemoradiotherapy followed by chemotherapy, both administered as described above.

Adverse effects were assessed with the use of the Common Toxicity Criteria and a clearly defined protocol for modifications and delays of treatment. The study required each center to treat patients according to its own quality-assurance standards for radiotherapy.

Statistical Analysis

The primary outcome measure was the two-year survival rate; secondary outcomes were the incidence of adverse effects and recurrence and measures of the quality of life. Survival was calculated from the date of resection until the date of death from any cause; for patients lost to follow-up, data were censored on the date the patient was last seen alive. Survival estimates were derived by the method of Kaplan and Meier, and the log-rank test was used to assess differences in survival estimates among the groups. Stratified log-rank analyses and Cox pro-
Portional-hazards modeling were used to investigate and adjust for major prognostic and stratification factors. Hazard ratios indicating the effects of treatment on the risk of death were calculated and displayed in Forrest plots. Standardized area-under-the-curve methods were used to assess the mean observed quality of life within 12 months after resection; the global quality of life was compared among the groups with the use of the nonparametric Wilcoxon two-sample test. All analyses were carried out according to the intention-to-treat principle, and all reported P values are two-sided.

RESULTS

A total of 289 patients from 53 hospitals in 11 European countries underwent randomization between February 1994 and June 2000. Three ineligible patients (one who had not undergone resection and two who had previously had breast cancer) were included in the analysis on an intention-to-treat basis. Clinical features and characteristics of the tumors were similar among the groups (Table 1). The median time from resection to randomization was 21 days (interquartile range, 14 to 35), and the median time from resection to the start of assigned treatment was 46 days (interquartile range, 34 to 67) for the patients assigned to chemotherapy and 61 days (interquartile range, 47 to 80) for the patients assigned to chemoradiotherapy.

Compliance and Adverse Effects

A total of 145 patients were assigned to receive chemoradiotherapy (alone or with adjuvant chemotherapy), and 144 were assigned not to receive chemoradiotherapy — they received chemotherapy alone or were observed — according to the two-by-two design (Fig. 1). Treatment details were available for 128 of the 145 patients who received chemoradiotherapy (88 percent), of whom 90 (70 percent) received a total of 40 Gy according to the protocol, 27 (21 percent) received either more or less than 40 Gy, and 11 (9 percent) did not receive any chemoradiotherapy; most protocol violations were due to the patient’s decision not to receive the randomly assigned treatment (50 percent) or to progressive disease (19 percent).

A total of 147 patients were assigned to chemotherapy (75 to chemotherapy alone and 72 to chemotherapy in combination with chemoradiotherapy), and 142 did not receive chemotherapy alone (69 were assigned to the observation group and 73 to the chemoradiotherapy group), according to the two-by-two design (Fig. 1). Treatment details were available for 122 of the 147 patients randomly assigned to receive chemotherapy (83 percent), of whom 61 (50 percent) received six cycles according to the protocol, 40 (33 percent) received fewer than six cycles, and 21 (17 percent) did not receive any chemotherapy; most protocol violations in this block were due to the patient’s decision not to receive chemotherapy (33 percent) or to progressive disease (38 percent). Patients with a protocol violation were included in the analysis in their randomly assigned treatment group on an intention-to-treat basis.

Clinicians were asked to record the most severe episode of myelotoxic effects, stomatitis, diarrhea, and other adverse events. Adverse events of grade 3 or 4 were reported in 29 patients: 7 had hematologic events (2 patients assigned to chemotherapy alone and 5 to combination therapy), 9 had stomatitis (4 patients assigned to chemotherapy alone and 5 to combination treatment), 6 had diarrhea (2 patients assigned to chemotherapy alone and 4 to combination treatment), and 7 had other types of adverse events (2 patients assigned to chemoradiotherapy alone, 3 to chemotherapy alone, and 2 to combination treatment).
SURVIVAL
The analysis of survival was based on 237 deaths among the 289 patients (82 percent). The duration of follow-up was similar among the groups; the median was 47 months (interquartile range, 33 to 62) for the 52 patients who were still alive at the time of the analysis. All but 12 deaths were disease-related: there were 2 treatment-related deaths (1 associated with chemoradiotherapy alone and 1 with combination treatment), 1 death from colon cancer, 1 from

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Random Assignment to Chemoradiotherapy</th>
<th>Random Assignment to Chemotherapy</th>
<th>Total (N=289)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Received (N=145)</td>
<td>No Chemoradiotherapy (N=144)</td>
<td>Received (N=147)</td>
</tr>
<tr>
<td>Days to randomization</td>
<td>Median 22 14–35</td>
<td>Median 20 14–36</td>
<td>Median 23 13–35</td>
</tr>
<tr>
<td>Sex — no. (%)</td>
<td>Male 79 (54) 91 (63) 82 (56) 88 (62) 170 (59)</td>
<td>Female 66 (46) 53 (37) 65 (44) 54 (38) 119 (41)</td>
<td></td>
</tr>
<tr>
<td>Age — yr</td>
<td>Median 62 55–66 61 61 61</td>
<td>Interquartile range 61 54–67 61 61 61</td>
<td></td>
</tr>
<tr>
<td>Resection margins — no. (%)</td>
<td>Negative 117 (81) 121 (84) 119 (81) 119 (84) 238 (82)</td>
<td>Positive 28 (19) 23 (16) 28 (19) 23 (16) 51 (18)</td>
<td></td>
</tr>
<tr>
<td>Nodal status — no. (%)</td>
<td>Negative 59 (41) 60 (42) 68 (46) 51 (36) 119 (41)</td>
<td>Positive 77 (53) 78 (54) 73 (50) 82 (58) 155 (54)</td>
<td></td>
</tr>
<tr>
<td>Tumor grade — no. (%)</td>
<td>Well differentiated 29 (20) 33 (23) 35 (24) 27 (19) 62 (21)</td>
<td>Moderately well differentiated 80 (55) 68 (47) 73 (50) 75 (53) 148 (51)</td>
<td></td>
</tr>
<tr>
<td>Maximal tumor size — cm</td>
<td>Median 3.0 2.5–4.0</td>
<td>Unknown 15 (10) 12 (8) 16 (11) 11 (8) 27 (9)</td>
<td></td>
</tr>
<tr>
<td>Smoking history — no. (%)</td>
<td>Never 66 (46) 64 (44) 72 (49) 58 (41) 130 (45)</td>
<td>Past 33 (23) 39 (27) 33 (22) 39 (27) 72 (25)</td>
<td></td>
</tr>
<tr>
<td>Preoperative diabetes — no. (%)</td>
<td>No 113 (78) 113 (78) 115 (78) 111 (78) 226 (78)</td>
<td>Yes 25 (17) 23 (16) 23 (16) 25 (18) 48 (17)</td>
<td></td>
</tr>
<tr>
<td>Local invasion at operation — no. (%)</td>
<td>No 101 (70) 102 (71) 106 (72) 97 (68) 203 (70)</td>
<td>Yes 29 (20) 30 (21) 24 (16) 35 (25) 59 (20)</td>
<td></td>
</tr>
<tr>
<td>Involved adjacent structures on histologic analysis — no. (%)</td>
<td>No 87 (60) 88 (61) 90 (61) 85 (60) 175 (61)</td>
<td>Yes 44 (30) 46 (32) 44 (30) 46 (32) 90 (31)</td>
<td></td>
</tr>
<tr>
<td>Postoperative complications — no. (%)</td>
<td>No 103 (71) 98 (68) 104 (71) 97 (68) 201 (70)</td>
<td>Yes 33 (23) 37 (26) 34 (23) 36 (25) 70 (24)</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>9 (6) 9 (6) 9 (6) 9 (6) 18 (6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ovarian cancer, 3 from pulmonary embolism, 1 from myocardial infarction, 2 from a ruptured aortic aneurysm, 1 from gastrointestinal bleeding, and 1 from unknown causes. Survival was calculated from the date of resection. A sensitivity analysis in which survival was calculated from the date of randomization did not change the interpretation of the results or the conclusions.

Chemoradiotherapy
The median survival was 15.9 months (95 percent confidence interval, 13.7 to 19.9) among the 145 patients who were assigned to chemoradiotherapy and 17.9 months (95 percent confidence interval, 13.5 to 27.3) among the 75 patients randomly assigned to chemotherapy. The respective five-year survival estimates were 29 percent and 10 percent, respectively, among those who did not receive chemoradiotherapy (Fig. 2A). The Forrest plot (Fig. 3) confirmed the lack of a statistically significant benefit of chemoradiotherapy whether or not patients were also randomly assigned to receive additional chemotherapy.

Chemotherapy
The median survival was 20.1 months (95 percent confidence interval, 16.5 to 22.7) among the 147 patients who received chemotherapy and 15.5 months (95 percent confidence interval, 13.0 to 17.7) among the 142 patients who did not receive chemotherapy (hazard ratio for death, 0.71; 95 percent confidence interval, 0.55 to 0.92; P=0.009). Two-year and five-year survival estimates were 40 percent and 21 percent, respectively, among patients who received chemotherapy and 30 percent and 8 percent, respectively, among patients who received no chemotherapy (Fig. 2B). The Forrest plot (Fig. 4) confirmed a significant survival benefit for chemotherapy whether or not patients were also randomly assigned to receive chemoradiotherapy.

Additional Survival Analyses
The median survival was 16.9 months (95 percent confidence interval, 12.3 to 24.8) among the 69 patients randomly assigned to observation, 13.9 months (95 percent confidence interval, 12.2 to 17.3) among the 73 patients randomly assigned to chemoradiotherapy, 21.6 months (95 percent confidence interval, 13.5 to 27.3) among the 75 patients randomly assigned to chemotherapy, and 19.9 months (95 percent confidence interval, 14.2 to 22.5) among the 72 patients randomly assigned to chemoradiotherapy plus chemotherapy. The respective five-year survival estimates were 11 percent, 7 percent, 29 percent, and 13 percent. This two-by-two trial did not have the statistical power to compare these four groups directly.

Influence of Prognostic Factors
Log-rank analysis of the characteristics of patients and tumors revealed no significant differences in survival with respect to sex; an age of 60 years or more, as compared with less than 60 years; and the presence of preoperative diabetes, local invasion at
Figure 3. Forrest Plot of the Effect of Chemoradiotherapy on the Hazard Ratio for Death.

The size of each square is proportional to the precision of the estimate (number of patients, number of events, and variance). The hazard ratio for the unstratified analysis suggests a pooled reduction (±SD) in the hazard of death of 29±14.9 (P=0.05) in the absence of chemoradiotherapy. Confidence intervals (CIs) are indicated by horizontal lines and the diamond shape at the lower right. The position of each square indicates the point estimate of the risk associated with chemoradiotherapy. Data on tumor grade, nodal status, and tumor size were missing for some patients.
Figure 4. Forrest Plot of the Effect of Chemotherapy on the Hazard Ratio for Death.
The size of each square is proportional to the precision of the estimate (number of patients, number of events, and variance). The hazard ratio for the unstratified analysis suggests a pooled reduction (±SD) in the hazard of death of 29±11.1 (P=0.009) with the use of chemotherapy. Confidence intervals (CIs) are indicated by horizontal lines and the diamond shape at the lower left. The position of each square indicates the point estimate of the risk associated with chemotherapy. Data on tumor grade, nodal status, and tumor size were missing for some patients.
chemoradiotherapy and chemotherapy after resection of pancreatic cancer

operation, and postoperative complications, but borderline effects were found for current smoking (P=0.07), positive resection margins (P=0.10), and the presence of involved adjacent structures on histologic analysis (P=0.10). Increasingly differentiated tumors (P<0.001), the presence of lymph-node involvement (P<0.001), and a maximal tumor size of more than 2 cm, as compared with 2 cm or less (P=0.003), had significant adverse influences on survival. Stratifying treatment effects according to each of these factors did not influence the overall treatment result.

Cox regression modeling identified the grade of disease, tumor size (retained as a continuous variable), and lymph-node status as independent prognostic factors, adjusted for two stratification factors at randomization: randomization center (United Kingdom, Switzerland, Germany, or France) and resection-margin status (negative or positive) (Table 2). The analysis confirmed an adjusted hazard ratio for death of 1.47 (95 percent confidence interval, 1.10 to 1.95) with the use of chemoradiotherapy and an adjusted hazard ratio for death of 0.77 (95 percent confidence interval, 0.58 to 1.01) with the use of chemotherapy (Table 2). The interaction between chemotherapy and chemoradiotherapy in patients who underwent randomization according to the two-by-two design was tested with the use of a formal log-rank test and a multiplication interaction term, and the results of both were nonsignificant.

Recurrence

Of 158 patients who were known to have had a tumor recurrence, local recurrence alone was reported in 56 (35 percent), distant metastases alone in 53 (34 percent), and both types in 43 (27 percent); the site of recurrence was unknown in 6 patients (4 percent). Known recurrences were identified in 84 of 102 patients who were assigned to chemoradiotherapy (82 percent) and in 74 of 106 patients who did not receive chemoradiotherapy (70 percent). The median time to recurrence was 10.7 months (95 percent confidence interval, 8.8 to 15.5) among patients who received chemoradiotherapy and 15.2 months (95 percent confidence interval, 9.8 to 22.2) among those who did not receive chemoradiotherapy (P=0.04), with estimated 12-month recurrence-free survival rates of 46 percent and 55 percent, respectively. The disease recurred in 79 of 110 patients who received chemotherapy (72 percent) and in 79 of 98 patients who did not receive chemotherapy (81 percent). The median time to recurrence was 15.3 months (95 percent confidence interval, 10.5 to 19.2) among patients given chemotherapy and 9.4 months (95 percent confidence interval, 8.4 to 15.2) among patients who were not given chemotherapy.

<table>
<thead>
<tr>
<th>Variable</th>
<th>β Coefficient</th>
<th>(\chi^2)</th>
<th>P Value</th>
<th>Hazard Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasingly differentiated tumor</td>
<td>0.635±0.120</td>
<td>27.95</td>
<td><0.001</td>
<td>1.89 (1.49–2.39)</td>
</tr>
<tr>
<td>Maximal tumor size†</td>
<td>0.191±0.059</td>
<td>10.37</td>
<td>0.001</td>
<td>1.21 (1.08–1.36)</td>
</tr>
<tr>
<td>Positive nodes</td>
<td>0.449±0.146</td>
<td>9.52</td>
<td>0.002</td>
<td>1.57 (1.18–2.09)</td>
</tr>
<tr>
<td>Chemoradiotherapy</td>
<td>0.383±0.145</td>
<td>6.97</td>
<td>0.008</td>
<td>1.47 (1.10–1.95)</td>
</tr>
</tbody>
</table>

* The base model includes 249 patients and 209 deaths and has been adjusted for the two stratification factors at randomization: randomization center (United Kingdom, Switzerland, Germany, or France) and resection-margin status (negative or positive). A hazard ratio of more than 1 indicates an increased risk of death. CI denotes confidence interval.

† Maximal tumor size was a continuous variable.
(P=0.02), with estimated 12-month recurrence-free survival rates of 58 percent and 43 percent, respectively.

Quality of Life

Questionnaires regarding the quality of life were completed by 152 of the 289 patients (53 percent), a representative sample of the main study group. There were no significant differences in the mean observed quality of life within 12 months after resection between patients who received chemotherapy and those who did not receive chemotherapy (P=0.75) or between patients who received chemoradiotherapy and those who did not receive chemoradiotherapy (P=0.17).

Discussion

The results of the ESPAC-1 trial, which was a large, adequately powered, randomized trial of adjuvant treatment for resectable pancreatic cancer, show a significant survival benefit for adjuvant chemotherapy. The effect of adjuvant chemotherapy is particularly encouraging, since 18 percent of the patients had positive resection margins, a criterion for exclusion in the GITSG trial. Our results also show that adjuvant chemoradiotherapy not only fails to benefit patients but also reduces survival when it is given before chemotherapy.

The European Organization for Research and Treatment of Cancer (EORTC) randomly assigned 218 patients with pancreatic or ampullary tumors to adjuvant chemoradiotherapy (but no maintenance chemotherapy) or surgery alone. There was no significant difference in survival between the groups, including the 114 patients with pancreatic cancer, with median survivals of 17 and 13 months in the treatment and observation groups, respectively, and with 5-year survival estimates of 23 percent and 10 percent, respectively. Even apart from the high dropout rate, however, the study was statistically underpowered. A Norwegian study randomly assigned 61 patients (14 with ampullary tumors) to adjuvant chemotherapy (doxorubicin, mitomycin, and fluorouracil) or surgery alone. The median survival was significantly longer in the adjuvant-treatment group than in the observation group (23 months vs. 11 months), but the 5-year survival rate was not (4 percent vs. 8 percent). This trial was also statistically underpowered, and the results discouraged further use of the doxorubicin-containing regimen because of its toxicity. A Japanese trial reported no benefit from adjuvant chemotherapy, but its design precluded definitive conclusions from being drawn.

Evidence that adjuvant chemoradiotherapy for pancreatic cancer improves local control is inconclusive, and better local control has not been shown to correlate with increased survival. In our trial, the rates of local recurrence were not significantly different between patients who received chemoradiotherapy and those who did not receive chemoradiotherapy. Similar findings were reported in the EORTC trial. An analysis of 100,313 U.S. patients with pancreatic cancer in the National Cancer Database revealed that 9044 patients (9 percent) had undergone a pancreatectomy. Of these 9044 patients, only 39.9 percent had received adjuvant treatment: 6.5 percent had received radiotherapy, 5.1 percent chemotherapy, and 28.3 percent a combination of the two. The five-year survival rates were 23.3 percent after resection alone, 13.0 percent in the adjuvant-radiotherapy group, 17.4 percent in the adjuvant-chemotherapy group, and 17.0 percent in the combination-therapy group. Given such results, it is not surprising that there has been uncertainty regarding the use of adjuvant treatment for pancreatic cancer.

The survival curves in our trial began to separate in favor of adjuvant chemotherapy at 8 months after resection, but the curves showing the disadvantage of chemoradiotherapy did not begin to separate until 14 months. The simplest explanation for these observations is that chemoradiotherapy delayed the administration of chemotherapy (which in our trial resulted in a delay in both local and distant recurrences) and consequently reduced the potential benefit of chemotherapy that is derived from delivering it as soon as possible after resection. We conclude that standard care for patients with resectable pancreatic cancer should consist of curative surgery followed by adjuvant systemic chemotherapy.

Supported by Cancer Research United Kingdom and the Fonds de Recherche de la Société Nationale Française de Gastroentérologie; by a grant (9906195987) from the Consorzio Studio Universitari di Verona, Cariverona, and the Ministero Università e Ricerca Scientifica e Tecnologica, Rome; by the Associazione Italiana Ricerca Cancro, Milan, Italy; and by a European Community Grant (BMH4-CT98-3805).

Dr. Neoptolemos reports having received grant support from Solvay Pharmaceuticals and KS Biomedix.

We are indebted to Mrs. Jenny Almond and Mrs. Pat Baker, former ESPAC-1 trial coordinators, and to Professor Nick Lemoine, pathology advisor (Cancer Research United Kingdom, London).

Copyright © 2004 Massachusetts Medical Society.
CORRECTION

A Randomized Trial of Chemoradiotherapy and Chemotherapy after Resection of Pancreatic Cancer

A Randomized Trial of Chemoradiotherapy and Chemotherapy after Resection of Pancreatic Cancer. On page 1201, under “Adjuvant Therapy,” the first sentence should have read, “Chemoradiotherapy consisted of a 20-Gy dose to the previous tumor bed given in 10 daily fractions over a two-week period plus an intravenous bolus of fluorouracil (500 mg per square meter of body-surface area on each of the first three days of radiotherapy) and again after a planned break of two weeks,” rather than “a 20-Gy dose to the tumor given in 10 daily fractions over a two-week period plus an intravenous bolus of fluorouracil (500 mg per square meter of body-surface area on each of the first three days of radiotherapy and again after a planned break of two weeks),” as printed.
Adjuvant Therapy for Pancreatic Cancer — The Debate Continues

Michael A. Choti, M.D.

Surgical therapy currently offers the only potential cure for pancreatic adenocarcinoma. Surgical morbidity and mortality have decreased dramatically in recent years; the perioperative mortality associated with pancreaticoduodenectomy in major centers is approximately 1 percent. However, only a few patients present with tumors that are amenable to resection, and even after resection of a seemingly localized neoplasm, long-term survival is poor. Since many medical centers now have the capacity to resect pancreatic cancer safely, it is increasingly important to identify effective postoperative (adjuvant) therapy if we are to achieve long-term success in treating this disease.

The potential benefit of adjuvant therapy after resection of pancreatic cancer was first recognized by the randomized trial conducted by the Gastrointestinal Tumor Study Group (GITSG) almost 20 years ago. Since then, many reports from single institutions have shown a benefit of adjuvant treatment. Among the few randomized trials is the comparison of chemoradiotherapy with observation after the resection of pancreatic cancer, conducted by the European Organization for Research and Treatment of Cancer (EORTC). This study was statistically underpowered, but a trend toward improved survival was seen in the chemoradiotherapy group. Despite slowly emerging evidence of a benefit, the role of postoperative therapy in the management of pancreatic cancer is inadequately defined.

In this issue of the Journal, Neoptolemos and his colleagues report an updated and improved analysis of the European Study Group for Pancreatic Cancer (ESPAC-1) trial, the largest randomized trial of adjuvant therapy for pancreatic cancer reported to date. The original report from this group conveyed interim results for 541 patients in a randomized trial. This study combined the results of a trial with a two-by-two factorial design with those of two additional trials in which patients were randomly assigned to either chemoradiotherapy or no chemoradiotherapy and to either chemotherapy or no chemotherapy. The median follow-up at that time was 10 months. Although the results demonstrated a survival benefit associated with adjuvant chemotherapy, but not with chemoradiotherapy, the study was criticized, in part on the grounds that there was selection bias in the pooled data.

The current study represents an attempt to correct some of the limitations of the previous report by examining only the 289 patients who underwent strict randomization according to the factorial design and reporting results at a median follow-up of 47 months. Patients were randomly assigned to one of four groups. Although the groups were not analyzed separately, the design seemingly made it possible to determine the independent effect of each treatment on survival. This analysis led the authors to conclude that postoperative chemotherapy with fluorouracil plus leucovorin conferred a benefit in terms of survival, whereas postoperative chemoradiotherapy had a deleterious effect on survival.

The main advantage of a two-by-two factorial design is that it permits investigators to explore two potentially independent effects within a single study. The chemoradiotherapy regimen included a short course of radiosensitizing fluorouracil, which can be considered different from and perhaps independent of subsequent chemotherapy with a prolonged course of fluorouracil plus leucovorin. The design of such a trial provides the opportunity to analyze the main effect of each therapy and to identify any in-
teration or synergy between the two therapies. In the study by Neoptolemos et al., however, the two treatments — chemoradiotherapy and chemotherapy — were administered consecutively, with the first treatment probably influencing compliance with the second for those assigned to both. Indeed, of 147 patients assigned to receive chemotherapy with or without chemoradiotherapy, 33 percent of the 122 for whom treatment details were available did not complete the chemotherapy regimen and 17 percent received no chemotherapy. Details regarding the causes of nonadherence, including whether previous chemoradiotherapy affected the rate of completion of subsequent chemotherapy, are not presented in the article. The high rate of nonadherence and the potential for bias arouse concern regarding the validity of such an analysis and therefore its conclusions. Intention-to-treat analysis does not remove the potential bias reintroduced into the randomization structure by the sequential-therapy design.

One lesson to be learned from this well-intentioned study is that a straightforward analysis driven by the factorial structure is not always as simple as it seems. Because of confounding by the sequential nature of the two therapies and the high rate of nonadherence, the two-by-two design obligates investigators to provide detailed data on the survival of each of the four treatment groups.

The authors report that the trial was not powered sufficiently for them to perform statistical comparisons of the four treatment groups, but the differences in survival between individual groups did shed some light on the probable reason for the poorer survival among those treated with chemoradiotherapy. Patients who received chemoradiotherapy alone had a worse median survival than those who received no adjuvant therapy. Unless one believes that disease progression was somehow promoted by therapy, it is highly likely that the deleterious effect of chemoradiotherapy was indeed due to treatment-related toxic effects.

How should the results of this study influence future trials of adjuvant therapy for pancreatic cancer? Some may feel that the important question is whether future studies should include radiation or whether, instead, more rigorous specifications, support guidelines, and quality-assurance monitoring are necessary before this therapy is included in a trial of adjuvant therapy. Others may ask whether it is appropriate to include groups that do not receive radiation, given that other results support the role of radiation. The ongoing and maturing trials in Europe and the United States reflect general opinion regarding the future role of adjuvant radiation therapy. The ESPAC-3 trial, now in progress, does not include any radiation; rather, it is designed to compare three groups after resection of pancreatic cancer: patients receiving fluorouracil plus leucovorin, those receiving gemcitabine, and those receiving no treatment. Results of the closed Radiation Therapy Oncology Group trial 97-04 are expected later this year. In this trial, chemoradiotherapy was given to all patients with resected pancreatic cancer. Patients were randomly assigned to receive either gemcitabine or infusional fluorouracil given before and after chemoradiotherapy.

Current single-institution and phase 2 studies are exploring the role of newer chemotherapeutic and biologic agents. Nukui et al. reported data on 33 patients who received chemoradiotherapy, which included fluorouracil, cisplatin, and interferon alfa, followed by infusional fluorouracil. Although associated with somewhat increased toxicity, this regimen resulted in a remarkable 2-year survival rate of 84 percent and a median survival of 45 months. These results await confirmation in an ongoing phase 2 trial by the American College of Surgeons Oncology Group. Newer biologic agents, including farnesyl transferase inhibitors and monoclonal antibodies such as trastuzumab and cetuximab, are currently being tested in patients with metastatic pancreatic cancer.

As these studies evolve, promising new therapies will certainly make their way into adjuvant-therapy trials. In the future, decisions about adjuvant therapy will probably be influenced by improved methods for the assessment of the risk of recurrence, by the availability of more accurate surgical staging methods, and by the application of molecular diagnostic techniques. Many remain hopeful that advances in systemic and locoregional therapies, along with improvements in risk assessment and early detection of pancreatic cancer, will result in an optimism heretofore not seen among patients and physicians concerned with this disease.

From Johns Hopkins Hospital, Baltimore.

Address reprint requests to Dr. Choti at Johns Hopkins Hospital, 600 N. Wolfe St., Halsted 614, Baltimore, MD 21287-5614, or at mcho@jhmi.edu.

Copyright © 2004 Massachusetts Medical Society.